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Direct numerical simulation is used to examine turbulent mixing in a shear-free
stably stratified fluid. Energy is continuously supplied to a small region to maintain
a well-developed kinetic energy profile, as in an oscillating grid flow (Briggs et al.
1996; Hopfinger & Toly 1976; Nokes 1988). A microscale Reynolds number of 60
is maintained in the source region. The turbulence forms a well-mixed layer which
diffuses from the source into the quiescent fluid below. Turbulence transport at the
interface causes the mixed layer to grow under weakly stratified conditions. When
the stratification is strong, large-scale turbulent transport is inactive and pressure
transport becomes the principal mechanism for the growth of the turbulence layer.
Down-gradient buoyancy flux is present in the large scales; however, far from the
source, weak counter-gradient fluxes appear in the medium to small scales. The
production of internal waves and counter-gradient fluxes rapidly reduces the mixing
when the turbulent Froude number is lower than unity. When the stratification is weak,
the turbulence is strong enough to break up the density interface and transport fluid
parcels of different density over large vertical distances. As the stratification intensifies,
turbulent eddies flatten against the interface creating anisotropy and internal waves.
The dominant entrainment mechanism is then scouring. Mixing efficiency, defined as
the ratio of buoyancy flux to available kinetic energy, exhibits a similar dependence
on Froude number to other stratified flows (Holt et al. 1992; Lienhard & Van Atta
1990). However, using the anisotropy of the turbulence to define an alternative
mixing efficiency and Froude number improves the correlation and allows local
scaling.

1. Introduction
Turbulent mixing across a density interface is a common occurrence in geophysical

flows and affects the dispersion of contaminants and nutrients. While large advective
motions tend to dominate horizontal mixing, entrainment by turbulence is a major
contributor to the vertical exchange between layers in stratified fluids. Stable density
stratification, a distinguishing characteristic of geophysical flows, impedes turbulent
motions but a portion of the kinetic energy of the turbulence is converted into
potential energy through stirring and mixing.
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Turbulent kinetic energy that can be used for mixing can be produced in many ways.
For example, wind-induced shear stress on water surfaces produces a homogeneous
well-mixed layer which diffuses downward into quiescent regions. Turbulence is also
created by intense surface and internal wave breaking and by tidal forcing in estuaries.
Localized turbulence generation in the laboratory can be accomplished with an
oscillating grid (see for example, Hopfinger & Toly 1976; Thompson & Turner 1975).
The turbulent kinetic energy diffuses from the grid and propagates into quiescent
portions of the fluid; in these experiments a sharp density interface was maintained
between the well-mixed turbulent layer and the quiescent region (other work has linear
stratification, see E & Hopfinger 1986; Linden 1975). Shear-free experiments allow
entrainment by the turbulence at the interface to be isolated from other phenomena.
Also, as shown in our earlier paper (Briggs et al. 1996) they allow careful testing of
models for turbulent diffusion.

There are disadvantages to using oscillating grids to create turbulence. The length
scale imposed by the grid may dominate the turbulence structure and persist far from
the source (Turner 1968). The grid stroke, mesh, and frequency, as well as distance
from the grid, also affect the turbulence (Nokes 1988). Additionally, the velocity
decay rates and the far-field anisotropy depend on the grid stroke and distance
from the grid (De Silva & Fernando 1992). Although shear-driven entrainment flows
are a good representation of naturally occurring well-mixed layers, the presence of
shear complicates the analysis of turbulence. Instabilities caused by the mean shear
(Kelvin–Helmholtz billowing) are largely responsible for the growth of the mixed
layer (Kantha et al. 1977; Sullivan & List 1994).

Local values of the Reynolds, Richardson, and Prandtl numbers determine the
turbulence structure and mixing mechanisms (Breidenthal 1992). At low Richardson
number, large overturning motions are possible because the turbulence is not affected
by buoyancy. Parcels of fluid can be transported over large vertical distances and
engulfment may occur at weakly stratified interfaces. Buoyancy forces prevent the
large scales from overturning when the potential energy change that would result
from an overturning event exceeds the kinetic energy of the eddy. Weak eddies tend
to flatten at the interface instead of overturning. Flattening of eddies at the interface
was quantified by Hannoun, Fernando & List (1988) through the use of vertical
and horizontal energy spectra. Low wavenumbers in the vertical energy spectra
are attenuated while the same scales in the horizontal spectra are amplified near the
interface. Other mechanisms may operate when stratification influences the turbulence.
Linden (1973) proposed a recoiling mechanism in which a large-scale eddy deforms
the interface and then rebounds into the mixed layer. Interfacial wave breaking can
also entrain fluid locally (Fernando 1991). Under strong stratification, scouring may
occur near a sharp interface when an eddy pulls off small pieces of fluid of higher or
lower density. H. J. S. Fernando (1996, personal communication) recently proposed
a model in which the turbulence generates internal waves at the interface. The waves
grow until they break, causing local mixing. Fernando (1991) and Breidenthal (1992)
give comprehensive reviews of mixing mechanisms in stratified fluids.

In stratified turbulent flows, parcels of fluid are transported by large-scale motions
into regions of different density. If molecular diffusion is slow relative to that of
momentum (large Prandtl or Schmidt number) and if the turbulence kinetic energy
is insufficient to sustain stirring, then restratification or counter-gradient fluxes will
appear. Some experiments with homogeneous unsheared stratified turbulence show
that the largest scales restratify while the smaller scales continue to actively mix
(Lienhard & Van Atta 1990). Other unsheared stably stratified experiments did not
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exhibit restratification at any scale (Itsweire & Helland 1989). Finally, simulations of
homogeneous shear flow produce weak counter-gradient fluxes in the smallest scales
(Holt, Koseff & Ferziger 1992). Counter-gradient fluxes are increasingly present as
Prandtl number increases (Gerz, Schumann & Elghobashi 1989) but can appear for
Pr as low as 1 (Holt et al. 1992).

The turbulent Froude number has been established as a useful parameter for the
analysis of stratified turbulence and mixing (Ivey & Imberger 1991). The mixing
efficiency (flux Richardson number), which represents the buoyancy flux produced by
the local turbulent kinetic energy, depends on the Froude number. The maximum
conversion rate of kinetic energy into buoyancy flux in both experimental and nu-
merical homogeneous flows is approximately 25% and occurs at Fr ≈ 1 (Ivey et al.
1992). When restratification becomes active, the mixing efficiency decreases sharply.
Furthermore, there is support for Prandtl number dependence of the peak mixing
efficiency (higher Pr corresponds to higher mixing efficiency) because density fluc-
tuations and Rvρ = vρ/v′ρ′ are rapidly reduced for Pr < 1 (Lienhard & Van Atta
1990).

There are three purposes of this study. The first is to quantify the transport
processes, buoyancy flux, energy dissipation, and mixing near a density interface. Using
direct numerical simulation (DNS), the turbulence structure and mixing mechanisms
can also be studied in detail. The second purpose is to demonstrate that turbulence
quantities collapse with local scaling. Data from the present shear-free study and from
sheared flows will be shown to have the same turbulent Froude number dependence.
The last purpose is to quantify the internal wave field. In shear-free turbulence flows
with linear stratification, breaking internal waves have been shown to contribute to
the mixing (De Silva & Fernando 1992).

The paper is separated into the following sections. The parameters and definitions
are introduced in §2. The next section reviews the numerical method for turbulence
generation and discusses the kinetic energy budgets. Section 4 develops the entrain-
ment rate dependence on the Richardson number and describes the scale of buoyancy
flux and turbulence transport. The relationship between stratification and counter-
gradient fluxes (small-scale reversals) is also considered. In §5, the dependence on the
turbulent Froude number of mixing efficiency, length scales, and turbulence struc-
ture is analysed. Finally, §6 examines the internal waves that are generated by the
turbulence.

2. Relevant equations and definitions
The simulations presented in this paper are based on the Navier–Stokes equations

with the Boussinesq approximation. The code used is a modified version of one written
by Rogallo (1981) for homogeneous flows. The modifications include the addition of
a scalar field and a scheme that enables the code to simulate a mean scalar gradient,
including a thermocline. Periodic boundary conditions are imposed in all directions.
The details of the equations, numerical method, and the forcing used to simulate the
oscillating grid are given in our earlier paper (Briggs et al. 1996) and are not repeated
here in the interests of brevity. Although the earlier paper included both temporal
and spatial simulations, in this paper only spatial simulations which are intended
to mimic oscillating grid experiments are performed. Thus the flow is steady in the
statistical sense.

For shear-free turbulence with one inhomogeneous direction, the mean turbulent
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kinetic energy equation reduces to

∂

∂t

(
q2/2

)
= −1

2

∂

∂y
(u2 + v2 + w2)v − 1

ρo

∂pv

∂y
− g

ρo
vρ− ν ∂ui

∂xk

∂ui

∂xk

+ν
∂2(q2/2)

∂y2
+ Sk(y) (2.1)

where q2 = uiui, Sk(y) denotes the contribution to the budget from the source, ρ
represents fluctuating density, and ρo and ρs are the reference density of the quiescent
fluid and the density in the source region, respectively. The normalized density is
θ = (ρ − ρs)/(ρo − ρs). The vertical direction is aligned with the y-axis. A quantity
with an overbar denotes the ensemble average of that quantity over the homogeneous
horizontal plane. Primes denote r.m.s. values.

The Taylor microscales are defined as

λij,1 ≡
u′i(

(∂uj/∂x1)2

)1/2
(2.2)

and are used to form a Reynolds number, Reλ = qλ11,1/ν.
The strength of the stratification relative to the turbulence can be quantified in

many ways. The first, and most general, is with the bulk Richardson number,

Rib =
∆ρ

ρo

gλs

q2
s

. (2.3)

In this definition, ∆ρ represents the initial density difference across the interface and
the s subscript refers to quantities evaluated in the centre of the source region. In
equation (2.3), the Taylor microscale is taken as λs = λ11,1, that is a horizontal length
scale. The buoyancy time scale is the inverse of the Brünt–Väisälä frequency, N, which
is defined as

N =

(
−g
ρo

∂ρ

∂y

)1/2

. (2.4)

In this work, the gravitational acceleration, g, is changed to vary the bulk Richard-
son number Rib; the turbulence source strength and initial density difference across
the interface are held fixed. Simulations were performed with six different Rib: 0, 0.06,
0.24, 0.47, 0.95, and 1.18. In the Rib = 0 case the density field behaves as a passive
scalar.

The bulk Richardson number is used to distinguish simulations but is not useful for
analysis purposes. A more appropriate parameter for the investigation of turbulence
mixing is the isotropic Froude number which measures the strength of local turbulence
relative to stratification. This parameter is defined as the ratio of the local buoyancy
time scale (N−1) to the local turbulence time scale (`/q):

Frt =
q

N`
(2.5)

and is a function of distance from the simulated grid.
The overturning scale of the turbulence, `, is approximated by the Ellison scale,

which is defined as

` ≈ LE = − ρ′

∂ρ/∂y
(2.6)

and is also used to characterize stratified turbulence. The vertical turbulent Froude
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number,

Frv =
v′

N`
, (2.7)

which emphasizes the contribution of the vertical component of the turbulence, will
prove to be a very useful parameter. Like Frt, it varies in the vertical direction.
The same values of Frv occur in simulations with different Rib, enabling the study
of its effectiveness as a correlating parameter. Lastly, a local Richardson number
(Hopfinger & Toly 1976), can be defined as

Ril =
∆ρ

ρo

g `

u2
(2.8)

where `, the overturning scale, and u are averaged over the interface thickness, h. The
interface thickness is taken to be

h = ∆ρ/(∂ρ/∂y)max, (2.9)

a definition introduced by E & Hopfinger (1986).

3. Simulation of oscillating grid experiments
In laboratory experiments, oscillating grids are used to generate turbulence in a

tank of quiescent fluid (Hopfinger & Toly 1976; Hannoun et al. 1988). The numerical
method used in this work and the earlier work (Briggs et al. 1996) adds energy
continuously and locally into the flow by boosting the Fourier coefficients according
to

ûi(κ, y) = ûi(κ, y){1 + g(y)j(κ)} (3.1)

where g(y) is a Gaussian function which restricts the energy addition to a slim vertical
layer. For all cases considered here, the thickness δ of the Gaussian was δ/λs = 6.
The function j(κ) is used to restrict energy addition to the mid-range of scales and is
defined as

j(κ) =

{
1, κl 6 κ 6 κh
0, otherwise;

(3.2)

where κ = (κ2
x + κ2

z)
1/2 is the horizontal wavenumber and κl = 3 and κh = 42. The

simulations presented here were computed on a 1283 grid with a cut-off wavenumber
of 61. To maintain periodicity in the inhomogeneous direction, two mixed layers are
created in the domain (one above and one below the source). Quantities from these
two mixed layers can be averaged and in this paper we shall refer to the average as
if it were a single mixed layer.

On average, an equal amount of energy is added to each velocity component.
However, individual boosting events, which occur every fifth time step, introduce a
small degree of randomness into the turbulence by varying the magnitude of g(y)
among the velocity components. The details of how this is done are explained in Briggs
et al. (1996) so we shall not present them again. After about five eddy turnover time
scales, a well-developed kinetic energy profile develops, see figure 1. Distance from
the source is measured by the coordinate y∗ = (y − ys)/ls, where ys is the location
of the maximum source intensity and ls, the source half-width, is the width of the
region that contains 50% of the source energy. The density field, also shown in figure
1, initially has a sharp interface that simulates a thermocline. The interface is far
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Figure 1. Normalized kinetic energy before (– – – – –) and after (——) a boosting event. ks is the
maximum source intensity and is evaluated after boosting. The normalized density profile is also
sketched for reference (· · · ·).

Reλs 60
Pr 1.0
τ = ks/εs (s) 0.21
∆ρ/ρo 0.062

Table 1. Time-averaged quantities in the source region above the mixing layer

enough from the source to ensure that the local turbulent kinetic energy is derived
almost entirely from transport.

The steadiness of the flow needs to be addressed. When the flow becomes well-
developed, the source energy is no longer completely dissipated because transport
processes have developed and the kinetic energy and scalar interfaces have begun
to propagate into the the quiescent region. We consider the flow to be quasi-steady
at this point – ‘quasi’ because the interface is always moving and ‘steady’ because
relative to the turbulence velocity scale the interface motion is much slower. In this
case the initial conditions are no longer important and data on the early development
of the flows are not given. More details on the initial conditions of the turbulence
can be found in Briggs et al. (1996).

The parameters in the developed homogeneous source region are displayed in
table 1. As the bulk Richardson number is varied, the filter functions that define
the turbulence source, g(y) and j(κ), are held fixed. Therefore, the turbulence length
scales and energy in the source region are nearly identical in all simulations and are
independent of stratification intensity. Time normalized by the initial eddy turnover
time, τ = ko/εo, is denoted as t∗ = t/τ.

Since the interface location moves and its structure changes as the flow evolves,
it is not possible to use long term-time averaging to reduce the uncertainty in the
statistical results. (A limited amount of averaging over a time scale roughly equal
to the eddy turnover time scale was used.) As was shown in Briggs et al. (1996),
the uncertainty in the results can be reduced by making several simulations and
computing an ensemble average. Unfortunately, computer time limitations prevented
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us from performing multiple simulations of the present flows. The uncertainty depends
on which quantity one considers. Some results (such as the spectra) are quite smooth;
others (including the higher-order moments that appear in some of the budgets) are
less smooth.

One way to estimate the uncertainty is to argue that it is due to having a limited
number of large structures in the flow. From the contour plots presented in §5.4, it is
possible to estimate the number of large eddies in the interface region; it is typically 10
to 20, indicating that the statistical errors may be as large as 20–30%. An alternative
approach is to look at the budgets and spectra and estimate the uncertainty from
their lack of smoothness. This method indicates that the uncertainties are probably
in the range of 10–20%.

3.1. Kinetic energy budgets

The relationship between turbulence and stratification can be investigated by exam-
ining the terms in the kinetic energy budget, equation (2.1). In figure 2(a), the terms
in the kinetic energy budget for Rib = 0 are shown. All curves are normalized by the
source term (Sk) at y∗ = 0. Most of the energy added in the source region (y∗ < 1)
goes directly into dissipation because this region is nearly homogeneous and transport
is negligible. In the mixing layer (1.5 < y∗ < 2.5), the source goes rapidly to zero and
turbulence transport is important. Turbulent transport is the only source of turbu-
lence energy in the mixing layer and its gradient balances the dissipation. Pressure
transport acts in opposition to the turbulent transport because low-pressure wakes
are created behind eddies that penetrate the interface. This mechanism is similar to
ones found in temporal simulations (Briggs et al. 1996). The contribution of diffusive
transport is negligible.

Figure 2(b) shows the kinetic energy budget under weakly stratified conditions
(Rib = 0.24). When stable stratification is introduced, a fraction of the kinetic energy
is converted into potential energy by means of down-gradient buoyancy flux. In the
mixing layer, the source is small and transport is balanced by the buoyancy flux and
dissipation. The buoyancy flux is as much as 20% of the dissipation in the mixing
layer. In comparison, the buoyancy flux in homogeneous shear flows is about 10% of
the dissipation and is Richardson-number dependent (Holt et al. 1992). Relative to
the unstratified flow the pressure transport is reduced and the turbulence transport
decays more rapidly near the interface, indicating that the interface acts as a barrier
to turbulence transport. In the highly stratified case (Rib = 1.18), shown in figure 2(c),
the buoyancy flux and dissipation are of similar size in the mixing layer. Transport
is again sharply reduced at the interface. However, pressure transport changes sign
as distance from the source increases. This is possibly due to the flattening of eddies
at the interface which causes pressure pulses that transport energy into the interface
(Briggs et al. 1996). At the fringe of the kinetic energy front, pressure transport is the
only significant transport mechanism.

4. Entrainment and mixing
4.1. Richardson number effects

Parameterization of the entrainment rate is required for prediction of turbulence and
scalar transport. The relevant correlating parameters include the Richardson, Prandtl,
and Reynolds numbers. In this study, Pr and Re are fixed and only Rib is varied.

The entrainment velocity is the propagation speed of turbulence into a quiescent
region (Ellison & Turner 1959). To determine the mixed layer depth D, the mean
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Figure 2. Terms in the kinetic energy budget for (a) Rib = 0.0; (b) Rib = 0.24; (c) Rib = 1.18;
at t∗ = 14.7. Curves represent: ——, ∂(q2/2)/∂t; – – – – –, turbulence transport; — ·—, pressure
transport; —×—, dissipation; —◦—, source; and, in (b) and (c), · · · ·, buoyancy flux.

scalar profile at a given time is compared to the initial profile. The locations in the
evolved profile that have lower concentration are considered to be in the interface
region. The mixed layer depth, D, is defined as the average of these depths. The
definition of the entrainment velocity in this study is

dD

dt
= ve. (4.1)



Turbulent mixing in a shear-free stably stratified two-layer fluid 183

100

10–1

10–2

10–3

100 101 102

Rib = 0.06

Rib = 0.24
Rib = 0.47

Rib = 0.95
Rib = 1.18
E = 1.18/(1 + 0.41Ri3/2

l )

Ril

E
 =

 v
e
/u

c

Figure 3. Variation of the entrainment constant with local Richardson number. The solid line
represents the curve fit from Denton & Wood (1981) applied to the experimental data from Turner
(1968).

The entrainment rate E should scale on local variables because it is determined by
how much of the local turbulence is used for mixing. Depending on the strength of
the stratification, various entrainment regimes may occur. Although there is currently
disagreement regarding turbulent entrainment (Fernando 1991), it is accepted that

E =
ve

uc
= f(Ril) ∼ Riml . (4.2)

The characteristic velocity, uc, is taken as the average vertical velocity in the interface
and Ril is evaluated from quantities averaged over the interface. Local scaling has
been found to collapse entrainment data fairly well (E & Hopfinger 1986).

In a simulation, the entrainment rate can be calculated at each instant. As the flow
develops, Ril increases, mainly because the energy at the interface decreases due to
increasing distance from the source. Similar values of Ril are found in simulations
with different Rib. In figure 3, the instantaneous entrainment rate is shown for all
the simulations. For Ril < 5, the entrainment rate appears to be independent of
Ril . As we will see, the dominant entrainment mechanism in this range is large-scale
engulfment. This result is supported by the experimental data of Fernando & Long
(1985) and E & Hopfinger (1986).

For Ril > 5 the entrainment rate can be described by a power law with exponent
m ≈ −1.5 which is near the experimental values (E & Hopfinger 1986; Nokes 1988).
The empirical relation

E =
1.18

1 + 0.41Ri
3/2
l

, (4.3)

used by Denton & Wood (1981) to fit oscillating grid results from Turner (1968),
is also shown in figure 3. The simulation and experimental data compare well for
strong stratification. Entrainment for Ril > 5 is dominated by scouring mechanisms.
The density interface quickly recovers from a large-eddy impact. The entrainment
rate decreases because scouring is not as efficient as large-scale engulfment. Evidence
of such turbulence structure is given in §5.4.
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The scaling E ∼ Ri−1 can be derived by assuming that the rate of energy addition is
proportional to the rate of change of the potential energy (Linden 1975). However, the
rate of conversion of kinetic energy into potential energy at the interface is dependent
on local quantities (such as the Froude number, which changes at the interface).
Theoretical support for m = −1.5 was given by Linden (1973) using a model based
on vortex ring penetration.

Experiments yield a wide variety of entrainment rate parameters (Fernando 1991).
E & Hopfinger (1986) found m = −3/2, which agrees well with our results. Fernando
& Long (1985) obtained m = −7/4. These two experiments span a range of Ril of at
least two orders of magnitude. However, E & Hopfinger (1986) provide much more
data with less scatter. Nokes (1988) measured the entrainment rate for a variety of
grid configurations, strokes, and distances from the grid and found m = −1.06 to
−1.43.

When the Richardson number is large enough the only entrainment mechanisms
are molecular diffusion and internal wave breaking because turbulent motions are
completely suppressed. For Ril larger than 10 (Frv 6 0.7) the scalar transport con-
tinues to decrease because internal waves are created but do not contribute to the
buoyancy flux. In this regime the power-law exponent may decrease (Fernando 1991).
From the data in figure 3 it is difficult to determine whether the exponent changes.
The experimental data that support m = −7/4 also contain a large amount of scatter
(Fernando & Long 1985).

4.2. Scale dependence of entrainment

The discussion in §3.1 focused on the relative contributions of transport, buoyancy
flux, and dissipation to the kinetic energy budget. Once the important terms are
known, then spectra can reveal the contribution of various length scales to the mixing
process at a stable interface. We shall look at the one-dimensional buoyancy flux
spectrum

B(κx, y) =
∑
κz

v̂(κx, y, κz)ρ̂
∗(κx, y, κz) (4.4)

which is easily constructed.
The velocity gradient tensor is defined in three-dimensional wave space:

ŝij(k) = 1
2
(kjûi(k) + kiûj(k)). (4.5)

This tensor is then transformed into (κx, y, κz)-space and used to define the dissipation
spectrum. After summing over κz , we have a one-dimensional dissipation spectrum

Dij(κx, y) = 2ν
∑
κz

ŝim(κx, y, κz)ŝ
∗
jm(κx, y, κz). (4.6)

One-dimensional spectra in the κz-direction formed by integrating over κx are statis-
tically equivalent to these and can be used for averaging.

The spectral representation of turbulence transport and transfer appear in the
evolution equation for the two-dimensional energy spectrum tensor,

Eij(κx, y, κz) = ûi(κx, y, κz) û
∗
j (κx, y, κz). (4.7)

To derive the equation for this quantity the Fourier transform of the momentum
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equation,

uα,t + ukuα,k = − 1

ρo
p,α −

g

ρo
ρδα2 + νuα,kk, (4.8)

is taken in the two horizontal directions to produce

∂ûα

∂t
+F(ukuα,k) =Z (4.9)

where F denotes a Fourier transform and Z represents the Fourier transform of the
right-hand side of (4.8). Multiplying (4.9) by û∗α and adding it to the product of the
complex conjugate of (4.9) and ûα yields

∂

∂t
ûαûα

∗ + ûαF∗(ukuα,k) + û∗αF(ukuα,k) = û∗αZ+ ûαZ∗. (4.10)

The α indices are not summed over.
The second and third terms on the left-hand side of (4.10) represent the nonlinear

transport of turbulence and can be split into two components. The first is the transport
in the inhomogeneous direction:

Hαα = ûαF∗(u2uα,2) + û∗αF(u2uα,2) + 1
2
{ûαF∗(uαu2,2) + û∗αF(uαu2,2)}. (4.11)

The second, defined as

Iαα = ûαF∗(u1uα,1) + û∗αF(u1uα,1) + ûαF∗(u3uα,3) + û∗αF(u3uα,3)

− 1
2
{ûαF∗(uαu2,2) + û∗αF(uαu2,2)}, (4.12)

represents the spectral transfer of energy among wavenumbers within a horizontal
plane.

The one-dimensional spectra of the transport and transfer spectra are defined as

Hαα(κx, y) =
∑
κz

Hαα(κx, y, κz) (4.13)

and

Iαα(κx, y) =
∑
κz

Iαα(κx, y, κz), (4.14)

respectively. The form of Hαα is chosen such that the sum over all horizontal wave
numbers yields the average turbulence transport in a horizontal plane. That is,∑

κx

Hαα(κx, y) =
∂

∂y
uαuαv(y). (4.15)

Similarly, summing Iαα(κx, y) over κz yields∑
κx

Iαα(κx, y) = 0, (4.16)

which shows that Iαα represents transfer and does not contribute to the overall energy
balance.

In figure 4(a), transport spectra, H22, are shown for Rib = 0.24, 0.47, and 1.18 at
y∗ = 0.5. This is the approximate location of maximum transport in all simulations
(see figure 2a–c). The transport is negative and concentrated at low wavenumbers,
indicating that the large scales are responsible for most of the energy transport which
is an energy loss in this region. The curves in figure 4(a) are noisy due to the limited
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Figure 4. Transport spectra of the vertical velocity component at t∗ = 10.6, and (a)
y∗ = (y − ys)/ls = 0.5, (b) y∗ = 1.7. ——, Rib = 0.24; – – – – –, Rib = 0.47; (· · · ·), Rib = 1.18.

sample size. The transport at y∗ = 1.7, shown in figure 4(b) for the same cases, is
positive in the large scales, indicating that the large scales receive energy in this region
(through transport by the turbulence above). As Rib increases, less energy is received
because stable stratification prevents the penetration of large scales. Energy is also
removed from large scales and diverted into buoyancy flux.

In figure 5(a–c) contours of the transport are shown for Rib = 0.24, 0.47, and
1.18, respectively. For clarity, only contours of positive transport (receiving energy)
are shown. The full range of wavenumber (κx) and distance from the source (y∗)
is displayed. Near the source, there is little positive transport: positive transport is
generally found at y∗ > 1. As the stratification strengthens, the large scales become
less capable of transporting energy; consequently the contours do not extend as far
from the source. In the Rib = 1.18 case, the contours furthest from the source are
more closely spaced than in the Rib = 0.24 simulation, indicating that the interface
sharply reduces transport and acts as a barrier.

Figure 6(a,b) shows the transfer spectra, I22, for the same Rib at y∗ = 0.5 and
y∗ = 1.7, respectively; they integrate to zero in each horizontal plane. Near the
source, the cascade of energy is evident: large scales transfer energy to small scales.
No effects of stratification are present at this location. At y∗ = 1.7, the spectral
transfer process is not active, even in the weakly stratified case in which a relatively
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Figure 5. Contours of positive transport (H22) at t∗ = 10.6. Contour levels are identical in each
plot and normalized by the source intensity at y∗ = 0.

large amount of energy is transported. Although some transfer from the small to large
scales (reverse cascade) occurs, its magnitude is extremely small (note the change of
scale in figure 6b) so the energy remains in the large scales. Apparently, stratification
has weakened the turbulence and disrupted the transfer of energy.

The large and medium scales contribute to the dissipation near the source, at
y∗ = 0.5. Figure 7(a) shows the dissipation spectra at this location for Rib = 0.24,
0.47, and 1.18. The scale corresponding to the peak of D22(κx) is approximately ten
times the Kolmogorov scale. At y∗ = 1.7 only the large scales dissipate energy (figure
7b) and energy is transported by the large scales. Without active spectral transfer,
energy can only be dissipated at the large scales or converted into buoyancy flux
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Figure 6. Transfer spectra of the vertical velocity component at t∗ = 10.6, and (a)
y∗ = (y − ys)/ls = 0.5, (b) y∗ = 1.7. ——, Rib = 0.24; – – – – –, Rib = 0.47; · · · ·, Rib = 1.18.

or internal waves. In the highly stratified flow (Rib = 1.18), the dissipation is much
smaller at y∗ = 1.7 because few large scales are able to penetrate to this depth. Also,
more energy is diverted into buoyancy flux.

4.3. The scale of buoyancy flux

Buoyancy flux spectra at y∗ = 0.5 are shown in figure 8(a). In all cases the buoyancy
flux is confined to the large scales and is positive, indicating down-gradient mixing.
Although the density gradient in this region is weak, the turbulence receives energy
from the source and some mixing occurs.

As the distance from the source increases to y∗ = 1.7, the large-scale buoyancy
flux remains down-gradient (actively mixing) as shown in figure 8(b). The flux is
weaker due to the reduced available kinetic energy and the presence of internal
waves, which do not contribute to buoyancy flux. The spectra are noisy because
there are few large-scale eddies. Without an active energy cascade, the down-gradient
flux must occur at the largest scales because the turbulence is active only at low
wavenumbers.

Most of the stirring is accomplished by the large scales. However, at the medium
to small scales, very weak counter-gradient fluxes occur. Three contour plots of the
counter-gradient buoyancy flux are shown in figure 9(a–c), for Rib = 0.24, 0.47, and
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1.18, respectively. The contours represent the scales at which heavy (light) fluid is
descending (ascending) and restratifying. The contours are far from the source and
at medium to small wavenumbers. As stratification increases, a wider range of scales
become counter-gradient and they are confined to a thinner vertical layer. However,
these motions are much less energetic than the down-gradient fluxes occurring at the
large scales (compare contour levels to down-gradient flux magnitudes in figure 8).
The homogeneous turbulence simulations of Holt et al. (1992) also produced counter-
gradient fluxes at the largest wavenumbers for sufficiently large Ri. In the absence of
turbulence transport and spectral transfer these scales receive energy by the transfer
of potential energy to kinetic energy in the restratification process.

In addition to Reynolds number, the appearance and scale of counter-gradient
fluxes may depend on N and Pr (Itsweire & Helland 1989; Holt et al. 1992). The
unsheared linearly stratified experiments of Lienhard & Van Atta (1990) at N =
2.42 s−1, Pr = 0.7, showed that large scales are crushed by buoyancy forces and
eventually become counter-gradient while the smallest scales continue to mix. Data
from Itsweire & Helland (1989), recorded at lower buoyancy frequency and Pr � 1,
show that energy is suppressed by stratification in all scales without counter-gradient
fluxes.
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4.4. Interruption of the energy cascade

The interruption of the cascade can be analysed using energy spectra at various
locations in the mixing layer. The one-dimensional energy spectrum is defined
as

Eij(κx, y) =
∑
κz

Eij(κx, y, κz). (4.17)

In figure 10(a), one-dimensional spectra of the vertical energy are shown at y∗ = 1.5
for Rib = 0.0, 0.24, and 1.18. The total energy is lower in the high-Rib cases due
to reduced energy transport. Figure 10(b) shows the energy spectra at y∗ = 1.75
for the same simulations. All of the spectra are less energetic than at y∗ = 1.5,
owing to increased distance from the source. Owing to the low energy level, even
the unstratified spectrum at y∗ = 1.75 may not support an energy cascade (energy
decays as approximately k ∼ y−2.45 in the simulations and as k ∼ y−2.0 in most
experiments, Hannoun et al. 1988). Stratification further reduces the energy level (see
§5.4).

The first effect of stratification appears in the large scales: with less available
energy, large-scale overturns are reduced or prevented entirely. Without active over-
turning, the medium scales lose their primary source of energy in the interface
region, as evidenced by the spectra. Some energy is generated in the medium scales
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by the source but these eddies never reach the interface unless carried there by a
larger eddy. Although the energy in the large scales decreases with distance from
the source, these eddies remain energetic enough to deform the interface. After a
large eddy penetrates the interface, diffusion tends to smooth it and only a small
core retains enough buoyancy to allow conversion of potential energy to kinetic
energy.
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at t∗ = 10.6. ——, Rib = 0.24; – – – – –, Rib = 0.47; · · · ·, Rib = 1.18.

5. Correlation with turbulent Froude number
The previous sections presented results with respect to y∗. We shall see that the

vertical turbulent Froude number Frv (equation (2.7)) is the best parameter for the
local state of the turbulence under stable stratification. In figure 11, profiles of Frv are
shown for Rib = 0.24, 0.47, and 1.18 at t∗ = 10.6. The Froude number is large in the
source region because the density gradients are small and the turbulence is energetic.
As the interface is approached, Frv decreases as the density gradient increases and
turbulence energy decays. The vertical turbulent Froude number reaches a minimum
value of about 0.7, independent of Rib. This occurs near the centre of the interface
where the time scales of the turbulence and buoyancy are nearly equal. A minimum
Frv is reached because the turbulence cannot overturn when its time scale is shorter
than the buoyancy time scale. Although the curves are similar, the minimum value of
Frv occurs closer to the source as stratification increases because buoyancy slows the
propagation of the turbulence.

5.1. Mixing efficiency

Mixing in stratified turbulent flows is quantified by the down-gradient buoyancy flux.
The efficiency with which kinetic energy is converted into buoyancy flux is central to
many models (Linden 1975) and scales with the vertical turbulent Froude number. The
mixing efficiency, η, is defined as the ratio of buoyancy flux to the energy available for
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mixing (Ivey & Imberger 1991). For shear-free inhomogeneous turbulence the mixing
efficiency is

η =
B

T + Sk
(5.1)

where B is the buoyancy flux and T and Sk denote the contributions from the
transport and the source, respectively (T refers to the first two terms on the right-
hand side of equation (2.1)). Winters et al. (1995) defined a mixing efficiency in
terms of an irreversible mixing rate to eliminate ambiguity when internal waves and
counter-gradient fluxes are present.

Using (2.1) and assuming steady conditions and negligible molecular diffusion, (5.1)
can be recast as

η =
B

B + ε
(5.2)

where B = gvρ/ρo and ε = νui,kui,k . Under weak stratification (Frv � 1), the mixing
efficiency is nearly zero because the turbulence vigorously mixes fluid of nearly
constant density. Little buoyancy flux is produced and most of the energy is dissipated.
The mixing efficiency under strongly stratified conditions (Frv < 1) is also nearly zero
because most turbulent eddies are unable to stir the fluid. Furthermore, fluid that
is stirred by the strongest eddies may not mix owing to the production of counter-
gradient fluxes and/or internal waves.

In figure 12, the mixing efficiency is plotted against the isotropic Froude number,
Frt, a parameterization suggested by Ivey & Imberger (1991). Values from two
homogeneous stratified turbulent flows are also shown – the linearly stratified sheared
simulations of Holt et al. (1992) at Reλ = 52 and the linearly stratified unsheared
experiments of Lienhard & Van Atta (1990) at Reλ ≈ 30. The data show similar trends,
although the peak mixing efficiency and corresponding isotropic Froude number differ.
The three data sets represent fundamentally different stratified turbulent flows that
evolve from isotropic initial conditions to different anisotropic states.

The anisotropy of these flows as a function of Frt is shown in figure 13. The
turbulent Froude number decays with time in the homogeneous flows because N is
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fixed and v′ decreases. (Although the shear in the weakly stratified case of Holt et al.
1992 was strong enough to increase q, the Ellison scale grew faster causing Frt to
decay.) In these flows, the vertical r.m.s. velocity is attenuated, causing v′/u′ < 1. For
the cases with mean shear, u′ is taken as the spanwise component because mean shear
increases the r.m.s. velocity in the streamwise direction (Holt et al. 1992). Our mixing
layer simulations are quasi-steady (for Rib > 0 the density field affects the velocity
field slightly) and evolve with distance from the source; the turbulent Froude number
decays with y∗. The eddies that penetrate the interface (marked by Frv < 1.5) have
v′/u′ > 1 because they require a large amount of vertical kinetic energy to reach the
interface. For Rib = 1.18, the eddies flatten at the top of the interface (1.5 < Frv < 2.0)
causing v′/u′ to drop below unity. As shown above, the peak mixing efficiency in the
inhomogeneous simulations is higher than in the homogeneous flows, because, in the
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interface region, v′/u′ is larger in these flows. The horizontal components of energy
do not directly contribute to buoyancy flux.

By incorporating the anisotropy into the Froude number and mixing efficiency, a
better collapse of the data can be obtained. The vertical turbulent Froude number is a
more appropriate parameter because it is based on the vertical velocity, the component
responsible for mixing. In figure 14(a), the vertical mixing efficiency, defined as

ηv =

(
q√
3v′

)
η, (5.3)

is plotted against vertical turbulent Froude number and the data collapse markedly
improves. The maximum mixing efficiency occurs at Frv ≈ 1.

To further emphasize the anisotropy of the turbulence, an alternative vertical mixing
efficiency is defined as

η′v =

(
u′

v′

)
η. (5.4)

Use of this parameter is suggested by the kinds of arguments given in Briggs et al.
(1996). With this definition, the peak mixing efficiency is approximately 0.3 for
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inhomogeneous flows, as shown in figure 14(b). The peak isotropic mixing efficiencies
(η) are about 0.25 (Ivey et al. 1992), as shown in figure 12. The vertical mixing
efficiency is expected to be larger. Both definitions of vertical mixing efficiency reduce
to η in isotropic turbulence. Note that the overall efficiency of converting source
energy into potential energy is much lower than the mixing efficiency because most
of the energy is dissipated before it reaches the interface region.

Two other conclusions can be reached relative to the turbulent Froude number.
First, models for the deepening of the mixed layer and entrainment rate assume a
constant rate of conversion of turbulence energy into potential energy. These can
be improved by using the dependence of η′v on Frv . Secondly, it is interesting that
the mixing efficiency in all of the flows evolves toward a state of maximum mixing
efficiency. After this maximum is reached, however, vρ and ηv rapidly decrease owing
to internal wave and counter-gradient flux production.

5.2. Length scales in inhomogeneous stratified turbulence

The Ozmidov scale, defined as

LO =
( ε

N3

)1/2

, (5.5)

represents the largest possible overturning scale in a stratified flow (Ozmidov 1965).
Turbulence scales larger than LO are dominated by buoyancy and do not possess
enough kinetic energy to overturn. To calculate the Ozmidov scale from experimental
data, the dissipation is typically estimated using components of the strain rate tensor.
A review of many dissipation models is given in Itsweire et al. (1992).

The results from stably stratified experiments (Itsweire, Helland & Van Atta 1986;
Rohr et al. 1988) and simulations (Itsweire et al. 1992) indicate that stratification
begins to dominate the turbulence when the overturning scale (2.6) and the Ozmidov
scale are approximately equal. To examine the onset of buoyancy-controlled turbu-
lence, the Froude-number dependence of the ratio LO/LE is shown in figure 15. Data
from the homogeneous sheared simulations of Holt et al. (1992) and homogeneous
unsheared experiments of Lienhard & Van Atta (1990) are included for comparison.
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For Frv > 1 data from all flows collapse well and approach

LO

LE
∼ Frv3/2 (5.6)

at higher Frv . Ivey & Imberger (1991) originally derived this relationship in terms
of Frt; however for highly energetic turbulence Frv ∼ Frt. When Frv ≈ 1, buoyancy
significantly influences the evolution of the turbulence and the two scales are nearly
equal. Itsweire et al. (1992) find that LO ≈ LE in stratified shear flow when the
turbulence production is in balance with the dissipation and buoyancy flux (the
stationary Richardson number condition).

For Frv < 1, LO/LE can be less than unity even though LO is theoretically the largest
scale in a stratified flow. This is caused by internal waves which contribute to the
Ellison scale but not to the Ozmidov scale (Itsweire et al. 1992). The internal wave field
may be more active in the inhomogeneous unsheared simulations when stratification
is significant (Frv < 1). As a result, LO/LE is smaller in the inhomogeneous flows for
low Frv .

An estimate of the integral length scale,

Lq =
q3

ε
, (5.7)

should be proportional to the Ellison scale in weakly stratified turbulence because
both scales characterize the largest scales. If this relationship is known, the integral
scale can be used as a surrogate for the Ellison scale, which can be difficult to
measure. The ratio of Lq to LE as a function of Fr′t = q/NLq is shown in figure
16. For Fr′t > 0.5, Lq/LE is approximately 4. As the interface is approached, Lq/LE
increases and becomes dependent on Fr′t. The Ellison scale decreases rapidly as
the stratification intensifies because the large scales are too weak to create large
fluctuations in the density field. However, under weakly stratified conditions, the
Ellison scale can be accurately obtained from the estimate of the integral scale, Lq .
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5.3. Large-scale anisotropy

As discussed above, the anisotropy of the large scales, which is quantified by the
anisotropy tensor

bij =
uiuj

q2
− δij

3
, (5.8)

can be used to interpret the state of the turbulence. In figure 17, b22 is shown for
Rib = 0.24, 0.47, and 1.18. In all the simulations, b22 is approximately zero for Frv � 1
because the forcing is isotropic. As the interface is approached (Frv → 1), b22 becomes
slightly negative. The effect becomes more pronounced as Rib increases. This indicates
that the eddies are flattened upon reaching the interface. Hannoun et al. (1988) show
energy spectra which support the flattening effect. For Frv < 1, b22 increases and
becomes positive because the energy in the eddies that are strong enough to penetrate
the interface, where N decreases, contain mostly vertical kinetic energy. This energy
is converted into buoyancy flux and dissipation and not into horizontal kinetic
energy through flattening. Consideration of the horizontal anisotropy is not necessary
because b11 = b33 = −b22/2.

5.4. Classification of turbulence structure

Although the turbulence structure depends on the Richardson number, two regimes
with distinct structure can be distinguished. Under buoyancy affected, or weakly
stratified, conditions entrainment is accomplished by engulfment. Without strong
buoyancy forces large eddies are able to overturn and transport fluid of different
density over large distances. When buoyancy dominates, the interface becomes a
barrier to turbulence, dramatically slowing the mixing rate.

To examine the deformation of the interface, a surface of constant density (isopy-
cnal) is shown in figure 18(a) for Rib = 0.24. This density surface corresponds
to y∗ ≈ 1.7 and Frv > 1. For reference, the complete range of density is shown
in two planes perpendicular to the interface. The stirring mechanisms in weakly
stratified turbulence are associated with eddies of the integral scale (q3/2/ε); their
time scale is shorter than the buoyancy time scale (Frv > 1). Consequently, the
large scales have enough time to penetrate the interface region and overturn be-
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Figure 18. Two- and three-dimesional views of the density field at t∗ = 10.6 and y∗ ≈ 1.7:
(a) Frv ≈ 1, Rib = 0.24, (b)Frv ≈ 0.7, Rib = 1.18.
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fore buoyancy can exert its influence. However, density perturbations are rela-
tively small under weakly stratified conditions and little buoyancy flux is produced.
Molecular mixing can occur once the large-scale stirring increases the local den-
sity gradients. Using shadowgraphs, Turner (1968) found similar mechanisms. The
impact of large structures and the resulting engulfment can be seen at the inter-
face. The transport of interface fluid into the mixed layer (where it is subsequently
mixed) is visible in the two-dimensional contours. This two-stage mixing mecha-
nism is similar to the wave-breaking mechanism described by De Silva & Fernando
(1992).

A constant-density surface for Rib = 1.18 is shown in figure 18(b). This surface
is also located at y∗ ≈ 1.7; however Frv < 1 at this location. The interface and the
contours are relatively undisturbed indicating that transport into the mixed layer
is much slower. The scouring mechanism becomes active when the stratification is
strong enough to cause large eddies to flatten at the interface. In this process the
vortical motions scour the interface and move small amounts of fluid upward. Figure
18(b) contains several examples of eddy flattening. Fluid that has been scoured from
the interface is visible in the two-dimensional contours. Visualization of the interface
in laboratory experiments also reveals the presence of scouring (Fernando & Long
1985). The anisotropy of the turbulence supports these results (see §5.3). Rebounding
and internal wave breaking can also occur under strong stratification (Fernando
1991; Breidenthal 1992; Linden 1973). However, rebounding events, which happen
when the eddy descends below the level of neutral buoyancy and then recoils due to
the buoyancy force, were not observed in the present simulations and may be absent
at low Reλ. We also see little evidence of internal wave breaking as proposed by
H. J. S. Fernando (1996, personal communication); that may be due to the fact that
their theory assumes values of the Richardson and Reynolds numbers that are much
larger than those in our simulations.

Another noticeable feature of figure 18(b) is the absence of small-scale disturbances
on the interface. The deformation of the surface is caused almost exclusively by
large eddies because small eddies are not energetic enough to reach or deform the
interface. This behaviour is supported by the spatial dependence of the integral length
scale in shear-free inhomogeneous turbulence, which increases with distance from the
source (Hopfinger & Toly 1976). Turbulence structure at the density interface in the
buoyancy affected simulation (Rib = 0.24) is very different from that in a buoyancy
dominated one (Rib = 1.18).

5.5. Estimating the buoyancy flux

When diffusion is negligible, buoyancy flux is primarily responsible for changes in
the mean density field. Although direct measurement of vρ is possible in field studies
(Imberger & Head 1994), it is difficult to obtain and is typically inferred from other
data. The buoyancy flux can be estimated from limited measurements by taking
advantage of the constancy of the correlation coefficient Rvρ = vρ/v′ρ′ at large Frv
(Rvρ is approximately 0.6 for Frv � 1, Ivey & Imberger 1991). An eddy viscosity
model for the flux vρ is

vρ = Rvρ v
′ ρ′ ≈ −Rvρ v′ LE

∂ρ

∂y
(5.9)

and is based on a turbulence velocity scale, an overturning scale, and the mean density.
For weakly stratified flows, the Ellison scale is proportional to Lq (see §5.2). Using
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the integral scale, Lq , the flux for weakly stratified cases can be approximated as

vρ ≈ −Rvρ v′ (Lq/4)
∂ρ

∂y
. (5.10)

Predictions based on (5.10) for Rib = 0.24 and Rib = 1.18 are shown in figure 19(a,b).
For the weakly stratified case, the model performs well throughout the layer but
gives values that are high near the interface (1.5 < y∗ < 2 and Frv ≈ 1). At this
location, internal waves and counter-gradient fluxes reduce Rvρ, which is assumed
constant in (5.10). In the Rib = 1.18 simulation, the Froude numbers are smaller and
the predictions produced by (5.10) are less accurate.

6. Internal waves generated by turbulence
Two types of one-dimensional spectra involving the vertical velocity and density

fluctuations are helpful in the identification of internal waves (Piccirillo 1993). The
first is the co-spectrum, defined as

Covρ(κx, y) = Re

{∑
κz

v̂(κx, y, κz) ρ̂
∗(κx, y, κz)

}
, (6.1)
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and the second is the quadrature spectrum, defined as

Quvρ(κx, y) = Im

{∑
κz

v̂(κx, y, κz) ρ̂
∗(κx, y, κz)

}
. (6.2)

Together, the co-spectrum and quadrature spectrum can be used to determine the
phase angle, φ, between v and ρ (Lumley & Panofsky 1964):

tan(φ) =
Quvρ

Covρ
. (6.3)

When φ = 0, v and ρ are in phase and the turbulence is actively stirring the
fluid (down-gradient mixing). Counter-gradient fluxes are present when φ = ±π. In
this case, negative (positive) vertical velocity fluctuations are coincident with positive
(negative) density fluctuations. Internal wave motions are characterized by φ = ±π/2
(Holt et al. 1992).

The phase angle data further demonstrate the significance of the vertical Froude
number. In figure 20(a) the phase angle, φ, is shown for the Rib = 0.24 and Rib = 1.18
simulations in the source region (y∗ = 0). In both cases most scales have φ ≈ 0,
indicating that the source creates turbulence which mixes the fluid. The turbulent
Froude number at this location is much larger than unity (owing to a weak density
gradient and intense kinetic energy). Near the source there are no counter-gradient
fluxes, regardless of Rib.

The phase angles for Rib = 0.24 and Rib = 1.18 at the location at which Frv = 1
are shown in figure 20(b). In the strongly stratified case the turbulent Froude number
reaches unity at y∗ = 1.45 while in the Rib = .24 simulation this occurs at y∗ = 1.7.
When Frv = 1 the turbulence is controlled by stratification and only a few large
eddies penetrate far into the quiescent fluid. In both cases the largest scales continue
to actively mix. However, the mid-range scales have phase angles of ±π, consistent
with the counter-gradient fluxes that were described in the contour plot (figure 9).
Owing to stable stratification, large scales that penetrate the interface expend much
of their kinetic energy raising heavy fluid into the mixed layer. If a parcel of heavy
fluid is not mixed by smaller scales it will eventually sink, creating counter-gradient
buoyancy flux. However, relative to down-gradient mixing, the counter-gradient fluxes
are weak (counter-gradient fluxes are too small to be visible in figure 8). A few of
the high wavenumbers indicate internal wave motions (φ = ±π/2), but most of the
smallest scales generally yield down-gradient fluxes (φ ≈ 0). The kinetic energy at
high wavenumbers is derived from restratification occurring at the medium scales and
not by a cascade of energy from the large scales.

The minimum of Frv for the Rib = 0.24 and Rib = 1.18 flows occurs at y∗ = 2
and y∗ = 1.75, respectively. The phase angles at these locations are shown in figure
20(c). The counter-gradient fluxes have weakened significantly; this is consistent with
figure 9. The large scales have highly scattered values of φ, many of which are near
±π/2. Weak mixing continues at the highest wavenumbers. The phase angle plots
demonstrate the importance of the Froude number in characterizing the local state
of the turbulence: data for a wide range of Rib collapse well with Frv .

In figure 21, the buoyancy flux (gvρ/ρo) is plotted against the vertical Froude
number. In the interface region, where Frv is a minimum, the buoyancy flux rapidly
decreases. Although internal waves and counter-gradient fluxes are active at this
Froude number, the rapidly decreasing kinetic energy is responsible for much of the
observed decrease in gvρ/ρo. To isolate the decrease in buoyancy flux caused by
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Figure 20. Phase angles of the buoyancy flux for Rib = 0.24 and Rib = 1.18 at t∗ = 10.6: (a) centre
of the source region (Frv > 1); (b) Frv = 1.0; (c) Frv = 0.7 (minimum Frv).

internal waves and counter-gradient flux, the normalized buoyancy flux correlation,
Rvρ, is analysed. This correlation is plotted against Frv in figure 22 along with data
from other stratified flows. For Fr � 1 (near the source), Rvρ is approximately 0.6,
which agrees well with the results of homogeneous simulations (Holt et al. 1992) and
the experimental data of Ivey & Imberger (1991) for Pr ≈ 1. As the interface is
approached (Frv → 1) internal waves and counter-gradient fluxes rapidly reduce Rvρ.
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Figure 21. Profile of the buoyancy flux at t∗ = 10.6, normalized by the value at y∗ = 0 as a
function of Frv: ——, Rib = 0.24; – – – – –, Rib = 0.47; · · · ·, Rib = 1.18.
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Figure 22. Development of the vertical velocity–density correlation coefficient with Frv .

In this region the time scale of the large scales (LE/v) is close to the buoyancy time
scale (N−1) and the probability of turbulence generating internal waves is greatly
increased owing to resonance. All flows also exhibit similar Frv dependence.

6.1. Energy in the internal wave field

A more quantitative analysis of the internal wave energy is now presented. Linear
internal waves are solutions to the Taylor–Goldstein equation

c2(D2 − α2)Φ+N2Φ = 0, (6.4)

where α = (κ2
x +κ2

z)
1/2 is the horizontal wavenumber (Drazin & Reid 1981). Equation

(6.4) is a regular self-adjoint Sturm–Liouville problem with eigenvalues 1/c2; the
eigenfunctions Φ depend on the profile N(y). A general eigenvalue solver is used to
compute the solutions of (6.4) using zero-gradient boundary conditions.

The Fourier coefficients of the velocity field are then projected onto the basis
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Figure 23. Energy in the six most energetic modes of the Taylor–Goldstein equation.

functions

û(α, y) =
∑
i

aiΦi(α, y), (6.5)

where ai is a weighting coefficient (repeated indices do not imply summation in this
section). Application of orthogonality allows the explicit computation of am:

am =

∫ 2π

0

N2Φmû(α, y) dy∫ 2π

0

N2ΦmΦm dy

. (6.6)

The internal wave energy in the ith mode is found by summing over horizontal
wavenumbers

EI i =
∑
α

ai(α)a
∗
i (α). (6.7)

The energy can then be computed for each flow using the velocity field and N(y) in
well-developed fields (t∗ > 10). Figure 23 shows the energy in the six most energetic
modes. With the exception of the second mode, the energy in the internal wave field
generally increases with stratification. The more stratified (higher Rib) flows evolve
to lower values of Frv , enabling internal waves to be more active. It is difficult to
quantify the amount of turbulence kinetic energy that is transformed into wave energy.
However, observation of the strongly stratified interface reveals that flattening and
scouring are the dominant mechanisms and internal wave breaking is not apparent.
Interface fluid is transported into the mixed layer by being wrapped around a rotating
large eddy.

7. Conclusions
Direct numerical simulations were used to investigate the turbulence structure and

physical mechanisms of mixing at a shear-free stratified interface. The turbulence
source, located above the interface, is fixed and the bulk Richardson number is
varied. The collapse of the data with local Froude number, consistent with results
from homogeneous stratified flows, underscores the importance of local parameters
in the analysis of stratified turbulence.
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Kinetic energy budgets in the interface region quantify the importance of turbulence
transport. Under unstratified conditions, turbulence transport balances dissipation
and pressure transport. In weakly stratified flow, all of the terms in the budget are
reduced near the interface. Turbulence transport rapidly decreases as the large eddies
flatten at the interface. Energy transported into the interface region is converted
into buoyancy flux and dissipation. In highly stratified (buoyancy dominated) flow,
turbulence transport is extinguished at the interface. Pressure transport becomes
positive, balancing dissipation and buoyancy flux, and internal waves become active.

Turbulence structure can be characterized by local Froude number for fixed Re
and Pr. Large engulfing structures that appear under weakly stratified conditions
(Frv > 1) cause the interface to become highly distorted and contribute to mixing.
When stratification intensifies, the interface acts as a barrier to turbulence diffusion
and large-scale overturns become impossible. Eddies moving downward from the
source stall at the interface. If the eddies have large horizontal vorticity, scouring can
occur.

Turbulence transport spectra show that the large scales are responsible for most of
the energy transport into the interface region. As stratification increases, energy at low
wavenumbers is reduced. Without large-scale overturns, spectral transfer of energy
from the large to small scales is also decreased. The buoyancy flux is predominately
down-gradient and occurs at the large scales. However, weak counter-gradient fluxes
at the medium to small scales are observed far from the source as parcels of fluid
stirred by the large scales restratify.

Internal waves are generated by the turbulence in the interface region where the
Froude number is minimum. The phase angle between velocity and density in the
large scales is close to ±π/2 here and the correlation between density and vertical
velocity rapidly decreases. The energy in the linear internal wave modes, determined
by projecting onto Taylor–Goldstein solutions, generally increases with stratification
at low wavenumber.

The vertical turbulent Froude number characterizes many features of stratified
turbulence including mixing efficiency, turbulence structure, and counter-gradient
fluxes. Use of the anisotropy of the turbulence also improves the correlation of
turbulence mixing with stable stratification. Incorporating anisotropy information into
the definition of the mixing efficiency allows data from various stratified turbulent
flows to collapse when plotted with Frv . The vertical mixing efficiency (ηv) is larger
than the isotropic mixing efficiency defined by Ivey & Imberger (1991) because it
emphasizes the anisotropy in the flow. Turbulent flows with more energy in the
horizontal component do not mix as effectively as flows with most of the energy in
the vertical component.

The Reynolds numbers in the simulations presented in this paper are fairly low:
Reλ = 60 in the source region. As a result, the turbulence may be influenced by
viscous effects. However, earlier work (Holt et al. 1992, among others) shows that
effects of Reynolds number essentially disappear when this parameter large enough.
The definition of ‘large enough’ may be flow dependent but a reasonable criterion
seems to be Reλ > 25. All of the flows in this paper are in this regime. Further support
for the argument that viscous effects are not important is provided by the generally
excellent agreement with the experimental data, all of which were taken at somewhat
higher Reynolds numbers.

The authors also wish to thank the Office of Naval Research for support of this
work through grant number N00014-92-J-1611, monitored by Dr L. Goodman.
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